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1. INTRODUCTION 

            In 1965, Zadeh [12] introduced the concept of fuzzy subset of a set X as a function from X into the 

closed interval 0 and 1 and studied their properties. Fuzzy set theory is a useful tool to describe situations in 

which the data or imprecise or vague and it is applied to logic , set theory, group theory, ring theory, real 

analysis, measure theory etc. In 1967, Rosenfeld [8] defined the idea of fuzzy subgroups and gave some of 

its properties. Li Hong Xing [3] introduced the concept of HX group. In 1988, Professor Li Hong Xing [5] 

proposed the concept of HX ring and derived some of its properties, then Professor Zhong [1,2] gave the 

structures of HX ring on a class of ring.  In this paper we define a new algebraic structure of an  fuzzy HX 

subring of a HX ring and investigate some related properties.  

 

2. PRELIMINARIES 

In this section, we site the fundamental definitions that will be used in the sequel. Throughout this 

paper, R = (R ,+, ·)  is  a  ring,  e is the additive identity element of  R and xy,  we mean x.y. 

2.1 Definition  

Let R be a ring. In 2
R 

– {}, a non-empty set    2
R 

– {}  

with two binary operations ‘ + ’ and ‘·’ is said to be a HX ring on R if  is a ring with respect 

to the algebraic operation defined by 

i. A + B = {a + b / a  A and b  B} , which its null element is denoted by Q , 

and the negative element of A is denoted  by – A. 

ii. AB = {ab / a  A and b  B} 

iii. A ( B + C ) = AB + AC and  (B + C) A = BA + CA. 

 

2.2 Definition  

Let R be a ring. Let μ be a fuzzy ring defined on R . Let   2
R  

– {}  be a 

 HX ring. A fuzzy subset 

 of   is called a fuzzy HX ring on  or a fuzzy ring induced by μ if the 

following conditions are satisfied. For all A , B , 

i. 

   ( A – B)   ≥   min { 


 (A),  


 (B) } , 

ii.    ( AB)        ≥    min { 

 (A),  


 (B) }  

where  

 (A) = max { μ(x)  /  for all xA  R }. 
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3. IMAGE AND PRE-IMAGE OF A FUZZY HX RING OF A HX RING UNDER 

HOMOMORPHISM AND ANTI HOMOMORPHISM 

In this section, we introduce the concept of an image, pre-image of the fuzzy sub HX ring of a HX 

ring and discuss some of its properties.  

3.1 Definition 

 Let R1 and R2 be any two rings. Let 1  2 
R1 

– {} and 2  2 
R2 

– {}  be any two  HX rings 

defined on R1 and R2 respectively. Let  and  be any two fuzzy subsets in R1 and R2 respectively. Let 
 

and 

 be fuzzy subsets defined on 1 and 2 respectively induced by  and .  Let f: 1  2   be a 

mapping then the image of  

  denoted as f (


) is a fuzzy subset of  2    defined as for each U2, 

(f (

)) (U) =    sup {

 
(X): X f 

-1
(U)}     ,  if  f 

-1
(U)  ≠    

     0                                    ,  otherwise 

Also the pre-image of  
 

 denoted as f 
-1

(

) under f is a fuzzy subset of 1 defined as for each X  1 ,  (f 

-

1
(


))(X)  =   


(
 
f (X)). 

 

3.2 Definition 

 Let R1 and R2 be any two rings. Let 1  2 
R1 

– {} and 2  2 
R2 

– {}  be any two  HX rings 

defined on R1 and R2 respectively. Let  and  be any two fuzzy subsets in R1 and R2 respectively. Let 
 

and 

 be fuzzy subsets defined on 1 and 2 respectively induced by  and .  The mapping f: 1  2   is 

said to be a homomorphism if it satisfies the following conditions. For any A, B 1, 

i. f(A+B)  = f(A) + f(B) 

ii. f(AB)  = f(A)f(B). 

3.3 Definition 

 Let R1 and R2 be any two rings. Let 1  2 
R1 

– {} and 2  2 
R2 

– {} be any two HX rings 

defined on R1 and R2 respectively. Let  and  be any two fuzzy subsets in R1 and R2 respectively. Let 
 

and 

 be fuzzy subsets defined on 1 and 2 respectively induced by  and .  The mapping f: 1  2   is 

said to be an anti homomorphism if it satisfies the following conditions. For any A, B 1, 

i. f(A+B)  = f(A) + f(B) 

ii. f(AB)  = f(B)f(A). 

 

3.4 Theorem  

Let 1 and 2 be any two HX rings on the rings R1 and R2 respectively. Let f : 1  2  be a 

homomorphism onto HX rings. Let  λ


  be  a  fuzzy  HX subring of 1  then f ( λ
 

) is a fuzzy  HX subring of 

2  , if  λ
 

  has a supremum property and λ


  is  f-invariant. 

Proof 

  Let  be a fuzzy subset of R1 and λ
 

 is a fuzzy HX subring of 1.  

             There exist X,Y 1 such that f(X) , f(Y)  2,  

                 (f (λ

)) (f(X) – f(Y))  =  (f (λ


)) (f(X–Y)) , 

=    λ

 (X–Y)                 

                                   ≥   min {λ
 

(X) , λ
 

(Y)} 

                                   =   min {(f (λ

))

 
(f(X)) , (f (λ


))

 
(f(Y))} 

                   (f (λ

)) (f(X) – f(Y))   ≥   min {(f (λ


))

 
(f(X) ), (f (λ


))

 
(f(Y))}. 

i. f (λ

)) (f(X) f(Y))      =   (f (λ


)) (f(XY)) ,  

                                   =    λ

 (XY)                 

                                   ≥   min {λ
 

(X) , λ
 

(Y)} 

                                   =    min {(f (λ

))

 
(f(X)) , (f (λ


))

 
(f(Y))} 

 (f (λ

)) (f(X)f(Y))  ≥   min {(f (λ


))

 
(f(X)) , (f (λ


))

 
(f(Y))}. 
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Hence, f (λ

) is a fuzzy HX subring of 2. 

 

3.5 Theorem  

Let 1 and 2 be any two HX rings on R1 and R2 respectively. Let f: 1  2 be a homomorphism on 

HX rings. Let 

  be a fuzzy HX subring of 2   then f 

–1 
(


) is a fuzzy HX subring of 1.   

Proof 

Let  be a fuzzy subset of R2   and 
  

be a fuzzy HX subring of 2 . 

For any X,Y  1, f(X) , f(Y)  2, 

i. (f 
–1

(

))

 
(X–Y)  =    


 (f(X–Y)) 

    =   

 (f(X) – f(Y)),  

≥   min {

 (f(X)) , 


 (f(Y))} 

=    min {(f 
–1

(

)) (X) , (f 

–1
(


)) (Y)} 

 (f 
–1

(

))

 
(X–Y) ≥    min{( f 

–1
(


)) (X) , (f 

–1
(


)) (Y)}. 

ii.         (f 
–1

(

))

 
(XY)  =    


 (f(XY)) 

      =    

 (f(X) f(Y))   

≥    min {

 (f(X)) ,  


 (f(Y))} 

=    min {(f 
–1

(

)) (X) , (f 

–1
(


)) (Y)} 

 (f 
–1

(

))

 
(XY)  ≥    min{( f 

–1
(


)) (X) , (f 

–1
(


)) (Y)}. 

Hence, f 
–1

(

) is a fuzzy HX subring of 1. 

 

3.6 Theorem 

 Let 1 and 2 be any two HX rings on R1 and R2 respectively. Let f: 1  2 be an anti 

homomorphism onto HX rings. Let  λ


  be  a  fuzzy  HX subring of 1,  then f(λ

) is a fuzzy  HX subring of 

2  , if  λ
 

  has a supremum  property and  λ


  is  f-invariant. 

 

Proof 

Let  be a  fuzzy subset of  R1 and λ
 

 is a  fuzzy HX subring of 1, then 

There exist X ,Y  1 such that f (X) , f (Y)  2 

i. (f (λ

)) (f(X) – f(Y)) =   (f (λ


)) (f(Y–X)) ,  

                                   =    λ

 (Y–X)                 

                                   ≥    min {λ
 

(Y) , λ
 

(X)} 

                                   =    min {(f (λ

))

 
(f(Y)) , (f (λ


))

 
(f(X))} 

        (f (λ

)) (f(X) – f(Y))  ≥    min {(f (λ


))

 
(f(X)) , (f (λ


))

 
(f(Y))}. 

ii. (f (λ

)) (f(X) f(Y)) =   (f (λ


)) (f(YX)) ,  

                                   =    λ

 (YX)                 

                                   ≥    min {λ
 

(Y) , λ
 

(X)} 

                                   =    min {(f (λ

))

 
(f(Y)) , (f (λ


))

 
(f(X))} 

(f (λ

)) (f(X)f(Y))  ≥    min {(f (λ


))

 
(f(X)) , (f (λ


))

 
(f(Y))}. 

Hence, f (λ

) is a fuzzy HX subring of 2. 

 

3.7 Theorem 

 Let 1 and 2 be any two HX rings on R1 and R2 respectively. Let f: 1  2  be an anti 

homomorphism on HX rings. Let 

  be a fuzzy HX subring of 2 then f 

–1
(


) is a fuzzy HX subring of 1.   

 

 Proof 

 Let  be a fuzzy subset of R2   and 


  be a fuzzy HX subring of 2 . 
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For any X,Y  1, then  f (X ) , f ( Y )  2 

i.  (f 
–1

(

))

 
(X–Y) =    


 (f(X – Y)) 

    =    

 (f(X) – f(Y)) ,                                                                                                                                            

                                              =    min {(f 
–1

(

)) (X) , (f 

–1
(


)) (Y)} 

            (f 
–1

(

))

 
(X–Y)  ≥    min{( f 

–1
(


)) (X) , (f 

–1
(


)) (Y)}. 

ii.          (f 
–1

(

))

 
(XY)  =    


 (f(YX)) 

      =    

 (f(Y) f(X))   

≥    min {

 (f(Y)) ,  


 (f(X))} 

=    min {(f 
–1

(

)) (Y) , (f 

–1
(


)) (X)} 

(f 
–1

(

))

 
(XY)  ≥    min{( f 

–1
(


)) (Y) , (f 

–1
(


) )(X)}. 

Therefore,  f 
–1

(

)  is a  fuzzy  HX subring  of 1.   

 

4. LEVEL SUBSETS OF FUZZY HX RING 

In this section, we introduce the idea of a level subsets of a fuzzy HX ring. We also discuss the 

relation between a given fuzzy HX subring of a HX ring and its level sub HX rings and investigate the 

conditions under which a given HX ring has a properly inclusive chain of sub HX rings.  

4.1 Definition 

 Let 
  

be a fuzzy HX subring of a HX ring . For any t  [0,1], we define the set            U(

 ; t) = { 

A   / 

 (A) ≥ t } is called an upper  level subset or a level subset of  


. 

 

4.2 Theorem 

 Let 
  

be a fuzzy HX subring of a HX ring  and U (

 ; t) is non-empty, then for any t  [0,1],  U 

(

 ; t) is a sub HX ring of . 

Proof 

 Let 

 be a fuzzy HX subring of a HX ring . 

 For any A , B  U (
 

; t )  we have , 

 (A)  ≥  t and  


 (B)  ≥  t. 

Now,   

 ( A  B)  ≥   min { 


 (A) , 


 (B) }  

      ≥   min { t , t } = t , for some t [0,1] 



 ( A  B) ≥   t 

        

 ( AB )        ≥   min { 


 (A), 


 (B) }  

≥   min{ t , t }   = t  

   

 ( AB )     ≥ t 

Hence, A  B ,  AB  U (

; t ) .  

Hence, U ( 

; t )  is a  sub HX ring  of a HX ring . 

 

4.3 Theorem  

Let  be a HX ring and 

 be a fuzzy subset of  such that U ( 

 
; t )  is a sub HX ring of  for all 

t [0,1] then 

 is a fuzzy HX subring of . 

Proof 

Let A , B ,  

Let  A    U (
 

; t1)      

 (A)  ≥  t1 

and      B   U(
 

; t2)        

 (B)  ≥  t2 

Suppose U (
 

; t1), U(
 

; t2)    and A , B  U(
 

; t2) , 

 As U(
 

; t2)  is a sub HX ring of , 



 ( A  B) ≥   t2 

 =  min { t1, t2} 
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     =  min{

 (A)  , 


 (B)} 



 ( A  B) ≥ min{


 (A)  , 


 (B)}. 



 ( A B) ≥   t2 

     =  min { t1, t2} 

     =  min{

 (A)  , 


 (B)}. 



 ( A B) ≥ min{


 (A)  , 


 (B)}. 

Hence 

 is a fuzzy HX subring of . 

 

4.4 Theorem  

         A fuzzy subset 
  

of  is a fuzzy HX subring of a HX ring  if and only if the level subsets  

U(

 ; t),   t  Image 


, are HX subrings of . 

 

Proof  

 

                 It is clear. 

 

4.5 Theorem 

Let 

 be a fuzzy HX subring of a HX ring .  If  two level  sub HX rings, U (

 
; t1), U(

 
; t2)  with 

t1  <  t2 of  

 are equal if and only if  there is no A in  such that 

 t1  ≤  

 (A)  <  t2. 

 

Proof 

It is clear. 

 

4.6 Theorem 

Any sub HX ring H of a HX ring  can be realized as a level sub HX ring of    

 some fuzzy HX subring of . 

 

Proof 

Let 

 be a fuzzy subset and A . 

                                  t        if  A  H,  where t  ( 0,1] 

Define,  

 (A)    =                  

                                                         0       if  A  H   

We shall prove that 

 is a fuzzy HX subring of . 

Let A , B  .  

i. Suppose A, B  H, then AB  H and AB  H. 

  

 (A) =  t , 


 (B) =  t,  , 


 (AB)  = t and 


 (AB)  = t. 

  Hence , 

 (AB )   =  t 

      ≥   min { t  , t }     



 (AB )  ≥ min { 


 (A), 


 (B) },  

             

 (AB)      =  t 

≥   min { t  , t }     

    

 (AB)  ≥ min { 


 (A), 


 (B) }, 

           ii. Suppose A  H and B  H, then AB  H and AB H. 

  

 (A) = t , 


 (B)  = 0 , 


 (AB)  = 0 and 


 (AB)  = 0. 

  Hence ,  

 (AB )   = 0 
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     ≥ min { t  , 0 }   



 (AB )    ≥ min { 


 (A), 


 (B) }, 

        

 (AB)       = 0 

     ≥ min { t  , 0}   



 (AB)      ≥   min { 


 (A), 


 (B) }  

             iii.    Suppose A, B  H, then AB  H or AB  H and AB  H or AB  H 

  

 (A) = 0, 


 (B) = 0 ,  


 (AB) = t or  0, 


 (AB)  =  t or 0 

  Hence,  

 (AB )    ≥   min { 


 (A), 


 (B) },    

            

 (AB)       ≥   min { 


 (A), 


 (B) }, 

 Thus in all cases, 

 is a fuzzy HX subring of . 

For this t  ( 0,1] , U(

 ; t )  = H. 

 

4.7 Remark  

               As a consequence of the Theorem 4.5 and 4.6, the level sub HX ring of a fuzzy HX subring 

 of a 

HX ring  form a chain. Since 

 (Q) ≥  


 (A) for all A in  and therefore  

 U(

 ; t0 )  , where 


 (Q) = t0 is the smallest and we have the chain : 

{Q} = U(

 ; t0)  U (


 ; t1 )  U(


 ; t2 )   …  U(


 ; tn ) = ,   

 where t 0  >  t 1  >  t 2  >…… >  t n, where, t 0 ,  t 1  ,  t 2  , …… ,  t n   [0 , 1]. 

 

 

 

5.  HOMOMORPHISM AND ANTI HOMOMORPHISM OF LEVEL SUBSETS OF FUZZY HX 

SUBRING 

In this section, we introduce the concept of homomorphism and anti homomorphism of level subsets 

of a fuzzy HX subring of a HX ring and discuss some of its properties. Throughout this section,  t  [ 0,1]. 

 

5.1 Theorem  

Let 1 and 2 be any two HX rings. f: 1  2  be an onto mapping and              U(λ


 ; t ) be a level 

sub HX ring of a fuzzy HX subring of 1. Then U(f(λ

)  ;  t ) = f(U(λ


  ; t) ). 

 

Proof 

   Let 1 and 2  be any two HX rings.  
                Let f : 1  2  be a mapping.  

                Let  U(λ


 ; t ) be a level sub HX ring of a fuzzy HX subring of 1.  

                Let X U(λ


 ; t ) such that f(X)  U(f(λ

) ; t ) ,where t  [0,1] .  

                Let f(X)  U(f(λ


 ); t )                  (f(λ

))

 
f(X)   ≥  t    

    λ
 

(X) ≥  t    

    X  U(λ


 ; t) 

   f(X)  f(U(λ


 ; t )) 

Hence,        U(f(λ


 ); t )  =   f(U(λ


 ; t )). 

 

5.2 Theorem  

Let 1 and 2  be any two HX rings. Let f : 1  2  be a mapping and              U(

; t)  be a level 

sub HX ring of a fuzzy HX subring of 2. Then  U((f 
–1

 (

) ;  t )  =  f 

–1
 (U(


  ;  t ) ) . 
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Proof 

 Let 1 and 2  be any two HX rings.  
              Let f : 1  2  be a mapping.  

              Let U(


 ;  t ) be a level sub HX ring of a fuzzy HX subring of 2.  

              Let X U(f 
–1

 (

) ;  t )                  (f 

–1
 (


))

 
(X)  ≥  t    

    

 (f(X)) ≥  t    

    f(X)  U(


  ;  t ) 

     X  f 
–1

 (U(


  ;  t )) 

Hence,        U(f 
–1

 (

) ;  t )  =  f 

–1
 (U(


  ;  t )). 

 

5.3 Theorem 

Let R1 and R2  be any two rings , 1 and 2 be HX rings  on R1 and R2 respectively. Let 
 

 be a 

fuzzy HX subring on 1. If f: 1→ 2 is a homomorphism and onto, then the image of a level sub HX ring 

U(

 ; t) of a  fuzzy HX subring  


 of a HX ring 1 is a level sub HX ring U(f(


 ); t) of a  fuzzy HX 

subring f (

) of a  HX ring 2. 

 

Proof 

Let R1 and R2  be any two rings and f : 1→ 2   be a homomorphism. 

Let 
  

be a  fuzzy HX subring  of a HX ring  1. Clearly, f (

) is a fuzzy HX subring of a HX ring  

2.   Let X and Y in 1, implies f (X) and f (Y) in 2.  

Let U (

 ; t) is a level sub HX ring  of  a  fuzzy HX subring  


  of a HX ring 1.  

Choose t in such a way  that  X, Y  U(

 ;  t)  and hence XY , XY  U(


 ; t). 

 Then,   
 

(X)   ≥   t     and  
 

(Y)    ≥  t . 

 Also   
 

(XY)  ≥    t,   
 

(XY)    ≥  t, 

 We have to prove that U (f (

) ; t) is a level sub HX ring of a  fuzzy HX subring  f(


) of a  

HX ring  2. 

 Now, Let f(X) , f(Y)
 
 U(f(


); t). 

            (f(

)) (f(X)) =  


 (X)   ≥   t, implies that   (f(


))(f(X))   ≥   t  

 (f(

))(f(Y)) =  


 (Y)   ≥   t, implies that  (f (


))(f(Y))   ≥   t .              

i. (f(

))(f(X)  f(Y)) =   (f(


))(f(XY)),     

                                 =  

 (XY)  

           (f(

))(f(X)  f(Y)) ≥   t    

   (f(

))(f(X)  f(Y)) ≥   t . 

(f(X)  f(Y))  U(f(

); t). 

ii. (f(

))(f(X) f(Y)) =   (f(


))(f(XY)),     

   =   

 (XY)  

   ≥   t 

          (f(

))(f(X) f(Y)) ≥   t. 

   (f(X) f(Y))        U(f(

); t). 

Hence, U(f(

) ;t) is a level sub HX ring of a fuzzy HX subring f(


) of a HX ring 2. 

 

5.4 Theorem  

Let R1 and R2  be any two rings , 1 and 2 be HX rings  on R1 and R2 respectively. Let 
 

 be a 

fuzzy HX subring on 2.  If f: 1→ 2 is a homomorphism on HX rings. Let U(

 ;  t) be a level sub HX 

ring of a fuzzy HX subring 
 

 of a HX ring  2 then    U(f 
–1

(

); t) is  a  level sub HX ring of a fuzzy HX 

subring f 
–1 

(

 ) of a  HX ring  1. 
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Proof 

 Let R1 and R2  be any two rings and f : 1→ 2   be a homomorphism. 

Let 
  

be a fuzzy HX subring of a HX ring  2. Clearly, f 
–1 

(

 ) is a fuzzy HX subring of a HX ring  

1.  Let X and Y in 1, implies f(X) and f(Y) in 2.  

Let U(
 

; t) be  a level sub HX ring  of a  fuzzy HX subring 

 of a HX ring 2.  

Choose t in such a way that  X, Y  U(

; t) and hence, X  Y , XY   U(


 ; t). 

 Then,   

(f(X))      ≥  t      and   


(f(Y))   ≥   t . 

 Also ,  

( f(X)f(Y))  ≥   t,   


(f(X)f(Y))   ≥    t, 

We have to prove that U (f 
–1

(

); t) is a level sub HX ring of a fuzzy HX subring                          f 

–

1
(


 ) of a  HX ring  1. 

 Now, Let X , Y
 
 U (f 

–1
 (


); t). 

            (f 
–1

(

 ))  (X)  =  


 (f(X))  ≥  t, implies that    (f 

–1
(


 )) (X)  ≥  t 

 (f 
–1

(

 )) (Y)  =  


 (f(Y))  ≥  t, implies that    (f 

–1
(


 )) (Y)  ≥  t 

i. (f 
–1

(

 )) (XY) =   


(f(XY))      

                                 =   

(f(X)  f(Y))       

                                  ≥  t 

                      (f 
–1

(

 )) (XY) ≥   t  

     XY     U(f 
–1

 (

); t). 

ii. (f 
–1

(

 ))(XY)  =   


(f(XY)      

                                 =   

(f(X)f(Y)),       

                                  ≥   t 

           (f 
–1

(

 ))(XY) ≥   t  

     XY    U(f 
–1

 (

); t). 

Hence, U(f 
–1

(

); t) is  a  level sub HX ring of a fuzzy HX subring of a HX ring  1. 

 

5.5 Theorem 

  Let R1 and R2  be any two rings , 1 and 2 be HX rings  on R1 and R2 respectively. Let 
 

 be a 

fuzzy HX subring on 1. If f : 1→ 2 is an anti homomorphism and onto, then the image of a level sub HX 

ring U(

 ; t) of a  fuzzy HX subring 


 of a HX ring 1 is a level sub HX ring U(f(


);t) of a  fuzzy HX 

subring f(

) of a  HX ring 2. 

 

Proof 

 Let R1 and R2  be any two rings and f : 1→ 2   be an anti homomorphism. 

Let 
 

be a fuzzy HX subring of a HX ring  1. Clearly, f(

) is a  fuzzy HX subring  of a HX ring  

2. Let X and Y in 1, implies f(X) and f(Y) in 2.  

Let U(

 ; t) is a level sub HX ring  of a  fuzzy HX subring  


 of a HX ring 1.  

Choose t in such a way that  X, Y  U(

 ;  t)  and hence  XY, XY     U (


 ; t). 

 Then,  
 

(X)   ≥  t   and   

(Y)    ≥  t . 

 Also   
 

(Y  X) ≥  t,  

(YX) ≥   t, 

We have to prove that U(f(

); t) is a level sub HX ring of a  fuzzy HX subring  f(


) of a  HX ring  

2. 

 Now, Let f(X) , f(Y)
 
 U(f(


); t). 

            (f(

))(f(X)) =  


 (X)  ≥  t, implies that (f(


))(f(X))   ≥ t  

 (f(

))(f(Y))  =  


 (Y)  ≥  t, implies that (f(


))(f(Y))  ≥ t .  

i. (f(

))(f(X)f(Y)) =  (f(


))(f(YX)),    

   =  

 (YX)  
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             ≥   t    

    (f(

))(f(X)f(Y))  ≥   t . 

 (f(X) f(Y))   U(f(

); t). 

ii. (f(

))(f(X) f(Y)) =   (f(


))(f(YX)),   

   =   

 (YX)  

               ≥  t    

               (f(

))

 
(f(X)f(Y)) ≥   t . 

(f(X) (f(Y))    U(f(

);t). 

Hence, U(f(

) ; t)  is a level sub HX ring  of a  fuzzy HX subring f (


) of  a HX ring 2. 

 

5.6 Theorem  

Let R1 and R2  be any two rings and 1 and 2 be HX rings  on R1 and R2 respectively. Let 
 

 be a  

fuzzy HX subring on 2.  If f: 1→ 2 is an anti homomorphism onto HX rings. Let U(

 ;  t) be a level sub 

HX ring of a fuzzy HX subring 
 

 of a HX ring  2 then U(f 
–1

(

 ); t) is a level sub HX ring of a fuzzy HX 

subring f 
–1

(

)
 
of a HX ring  1. 

 

Proof 

 Let R1 and R2  be any two rings and f: 1→ 2   be an anti homomorphism. 

Let 
  

be a fuzzy HX subring of a HX ring  2. Clearly, f 
–1 

(

) is a  fuzzy HX subring  of a HX 

ring  1.   Let X and Y in 1, implies f(X) and f(Y) in 2.  

Let U (

; t) be  a level sub HX ring  of a  fuzzy HX subring  


 of a HX ring 2.  

 Choose t in such a way that  X, Y  U(

; t) and hence,  XY,  XY  U(


 ; t). 

 Then,  

(f(X))      ≥  t  and  


(f(Y))  ≥  t . 

 Also   

(f(Y) f(X))   ≥  t,         


(f(Y)f(X))  ≥  t, 

 We have to prove that U(f 
–1

(

); t) is a level sub HX ring of a  fuzzy HX subring f 

–1 
(


 ) of a  HX 

ring  1. 

 Now, Let X , Y
 
 U(f 

–1
 (


); t). 

            (f 
–1

(

))(X) =  


 (f(X) ) ≥  t,  implies that (f 

–1
 (


) )(X)  ≥ t 

 (f 
–1

(

))(Y)  =  


 (f(Y))  ≥  t,  implies that (f 

–1
 (


) )(Y)  ≥ t .  

i. (f 
–1

 (

))(XY) =  


(f(XY))  

                                 =   

[f(Y)f(X)],       

                                  ≥   t 

                      (f 
–1

 (

))(XY)  ≥   t  

      X Y    U (f 
–1

 (

); t). 

ii. (f 
–1

(

))(XY)  =   


(f(YX))                                   

   =   

(f(Y)f(X)),       

                                  ≥  t 

                      (f 
–1

(

))(XY)  ≥  t  

       XY    U (f 
–1

 (

); t). 

Hence, U (f 
–1

(

) ;t) is a level sub HX ring of a fuzzy HX subring f 

–1
(


)
  
of a HX ring 1. 
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